skip to main content


Search for: All records

Creators/Authors contains: "Fumagalli, Michele"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The first stars were born from chemically pristine gas. They were likely massive, and thus they rapidly exploded as supernovae, enriching the surrounding gas with the first heavy elements. In the Local Group, the chemical signatures of the first stellar population were identified among low-mass, long-lived, very metal-poor ([Fe/H] < −2) stars, characterized by high abundances of carbon over iron ([C/Fe] > +0.7): the so-called carbon-enhanced metal-poor stars. Conversely, a similar carbon excess caused by first-star pollution was not found in dense neutral gas traced by absorption systems at different cosmic time. Here we present the detection of 14 very metal-poor, optically thick absorbers at redshift z ∼ 3–4. Among these, 3 are carbon-enhanced and reveal an overabundance with respect to Fe of all the analyzed chemical elements (O, Mg, Al, and Si). Their relative abundances show a distribution with respect to [Fe/H] that is in very good agreement with those observed in nearby very metal-poor stars. All the tests we performed support the idea that these C-rich absorbers preserve the chemical yields of the first stars. Our new findings suggest that the first-star signatures can survive in optically thick but relatively diffuse absorbers, which are not sufficiently dense to sustain star formation and hence are not dominated by the chemical products of normal stars. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  2. Abstract

    We use medium- and high-resolution spectroscopy of close pairs of quasars to analyze the circumgalactic medium (CGM) surrounding 32 damped Lyαabsorption systems (DLAs). The primary quasar sightline in each pair probes an intervening DLA in the redshift range 1.6 <zabs< 3.5, such that the secondary sightline probes absorption from Lyαand a large suite of metal-line transitions (including Oi, Cii, Civ, Siii, and Siiv) in the DLA host galaxy’s CGM at transverse distances 24 kpc ≤R≤ 284 kpc. Analysis of Lyαin the CGM sightlines shows an anticorrelation betweenRand Hicolumn density (NHI) with 99.8% confidence, similar to that observed around luminous galaxies. The incidences of Ciiand SiiiwithN> 1013cm−2within 100 kpc of DLAs are larger by 2σthan those measured in the CGM of Lyman break galaxies (Cf(NCII) > 0.89 andCf(NSiII)=0.750.17+0.12). Metallicity constraints derived from ionic ratios for nine CGM systems with negligible ionization corrections andNHI> 1018.5cm−2show a significant degree of scatter (with metallicities/limits across the range2.06logZ/Z0.75), suggesting inhomogeneity in the metal distribution in these environments. Velocity widths of Civλ1548 and low-ionization metal species in the DLA versus CGM sightlines are strongly (>2σ) correlated, suggesting that they trace the potential well of the host halo overR≲ 300 kpc scales. At the same time, velocity centroids for Civλ1548 differ in DLA versus CGM sightlines by >100 km s−1for ∼50% of velocity components, but few components have velocities that would exceed the escape velocity assuming dark matter host halos of ≥1012M.

     
    more » « less
  3. ABSTRACT

    Ram pressure stripping (RPS) is an important process to affect the evolution of cluster galaxies and their surrounding environment. We present a large MUSE mosaic for ESO 137-001 and its stripped tails, and study the detailed distributions and kinematics of the ionized gas and stars. The warm, ionized gas is detected to at least 87 kpc from the galaxy and splits into three tails. There is a clear velocity gradient roughly perpendicular to the stripping direction, which decreases along the tails and disappears beyond ∼45 kpc downstream. The velocity dispersion of the ionized gas increases to ∼80 km s−1 at ∼20 kpc downstream and stays flat beyond. The stars in the galaxy disc present a regular rotation motion, while the ionized gas is already disturbed by the ram pressure. Based on the observed velocity gradient, we construct the velocity model for the residual galactic rotation in the tails and discuss the origin and implication of its fading with distance. By comparing with theoretical studies, we interpreted the increased velocity dispersion as the result of the oscillations induced by the gas flows in the galaxy wake, which may imply an enhanced degree of turbulence there. We also compare the kinematic properties of the ionized gas and molecular gas from ALMA, which shows they are co-moving and kinematically mixed through the tails. Our study demonstrates the great potential of spatially resolved spectroscopy in probing the detailed kinematic properties of the stripped gas, which can provide important information for future simulations of RPS.

     
    more » « less
  4. Abstract

    The circumgalactic medium (CGM) plays a vital role in the formation and evolution of galaxies, acting as a lifeline between galaxies and the surrounding intergalactic medium. In this study, we leverage a unique sample of quasar pairs to investigate the properties of the CGM with absorption line tomography. We present a new sample of medium-resolution Keck/ESI, Magellan/MagE, and VLT/XSHOOTER spectra of 29 quasar pairs at redshift 2 <z< 3. We supplement the sample with additional spectra of 32 pairs from the literature, creating a catalog of 61 quasar pairs with angular separations between 1.″7 and 132.″9 and projected physical separations (r) between 14 kpc and 887 kpc. We construct a catalog of 906 metal-line absorption doublets of Civ(λλ1548, 1550) with equivalent widths ranging from 6 m Å ≤Wr,1550≤ 2053 m Å. The best-fit linear model to the log-space equivalent width frequency distribution (logf(Wr)=mlog(Wr)+b) of the sample yields coefficients ofm= −1.44 ± 0.16 andb= −0.43 ± 0.16. To constrain the projected extent of Civ, we calculate the transverse autocorrelation function. The flattening of the autocorrelation function at lowrprovides a lower limit for the coherence length of the metal enriched CGM—on the order of 200h−1comoving kpc. This physical size constraint allows us to refine our understanding of the metals in the CGM, where the extent of Civin the CGM depends on gas flows, feedback, timescale of metal injection and mixing, and the mass of the host galaxies.

     
    more » « less
  5. ABSTRACT

    We present an analysis of the kinematics and ionization conditions in a sample composed of seven star-forming galaxies undergoing ram-pressure stripping in the A1367 cluster, and the galaxy ESO137–001 in the Norma cluster. MUSE observations of two new galaxies in this sample, CGCG097–073 and CGCG097–079, are also presented. This sample is characterized by homogeneous integral field spectroscopy with MUSE and by a consistent selection based on the presence of ionized gas tails. The ratio [O i]/H α is consistently elevated in the tails of these objects compared to what observed in unperturbed galaxy discs, an ubiquitous feature which we attribute to shocks or turbulent phenomena in the stripped gas. Compact star-forming regions are observed in only $\approx 50 {{\ \rm per\ cent}}$ of the tails, implying that specific (currently unknown) conditions are needed to trigger star formation inside the stripped gas. Focusing on the interface regions between the interstellar and intracluster medium, we observe different line ratios that we associate to different stages of the stripping process, with galaxies at an early stage of perturbation showing more prominent signatures of elevated star formation. Our analysis, thus, demonstrates the power of a well selected and homogeneous sample to infer general properties arising from ram-pressure stripping inside local clusters.

     
    more » « less
  6. Abstract

    We present the KODIAQ-Z survey aimed to characterize the cool, photoionized gas at 2.2 ≲z≲ 3.6 in 202 Hi-selected absorbers with 14.6 ≤logNHI< 20 that probe the interface between galaxies and the intergalactic medium (IGM). We find that gas with14.6logNHI<20at 2.2 ≲z≲ 3.6 can be metal-rich (−1.6 ≲ [X/H] ≲ − 0.2) as seen in damped Lyαabsorbers (DLAs); it can also be very metal-poor ([X/H] < − 2.4) or even pristine ([X/H] < − 3.8), which is not observed in DLAs but is common in the IGM. For16<logNHI<20absorbers, the frequency of pristine absorbers is about 1%–10%, while for14.6logNHI16absorbers it is 10%–20%, similar to the diffuse IGM. Supersolar gas is extremely rare (<1%) at these redshifts. The factor of several thousand spread from the lowest to highest metallicities and large metallicity variations (a factor of a few to >100) between absorbers separated by less than Δv< 500 km s−1imply that the metals are poorly mixed in14.6logNHI<20gas. We show that these photoionized absorbers contribute to about 14% of the cosmic baryons and 45% of the cosmic metals at 2.2 ≲z≲ 3.6. We find that the mean metallicity increases withNHi, consistent with what is found inz< 1 gas. The metallicity of gas in this column density regime has increased by a factor ∼8 from 2.2 ≲z≲ 3.6 toz< 1, but the contribution of the14.6logNHI<19absorbers to the total metal budget of the universe atz< 1 is a quarter of that at 2.2 ≲z≲ 3.6. We show that FOGGIE cosmological zoom-in simulations have a similar evolution of [X/H] withNHi, which is not observed in lower-resolution simulations. In these simulations, very metal-poor absorbers with [X/H] < − 2.4 atz∼ 2–3 are tracers of inflows, while higher-metallicity absorbers are a mixture of inflows and outflows.

     
    more » « less
  7. null (Ed.)
    ABSTRACT We present the measured gas-phase metal column densities in 155 sub-damped Ly α systems (subDLAs) with the aim to investigate the contribution of subDLAs to the chemical evolution of the Universe. The sample was identified within the absorber-blind XQ-100 quasar spectroscopic survey over the redshift range 2.4 ≤ zabs ≤ 4.3. Using all available column densities of the ionic species investigated (mainly C iv, Si ii, Mg ii, Si iv, Al ii, Fe ii, C ii, and O i; in order of decreasing detection frequency), we estimate the ionization-corrected gas-phase metallicity of each system using Markov chain Monte Carlo techniques to explore a large grid of cloudy ionization models. Without accounting for ionization and dust depletion effects, we find that the H i-weighted gas-phase metallicity evolution of subDLAs is consistent with damped Ly α systems (DLAs). When ionization corrections are included, subDLAs are systematically more metal poor than DLAs (between ≈0.5σ and ≈3σ significance) by up to ≈1.0 dex over the redshift range 3 ≤ zabs ≤ 4.3. The correlation of gas phase [Si/Fe] with metallicity in subDLAs appears to be consistent with that of DLAs, suggesting that the two classes of absorbers have a similar relative dust depletion pattern. As previously seen for Lyman limit systems, the gas phase [C/O] in subDLAs remains constantly solar for all metallicities indicating that both subDLAs and Lyman limit systems could trace carbon-rich ejecta, potentially in circumgalactic environments. 
    more » « less
  8. ABSTRACT We use the angular two-point correlation function (TPCF) to investigate the hierarchical distribution of young star clusters in 12 local (3–18 Mpc) star-forming galaxies using star cluster catalogs obtained with the Hubble Space Telescope (HST) as part of the Treasury Program Legacy ExtraGalactic UV Survey. The sample spans a range of different morphological types, allowing us to infer how the physical properties of the galaxy affect the spatial distribution of the clusters. We also prepare a range of physically motivated toy models to compare with and interpret the observed features in the TPCFs. We find that, conforming to earlier studies, young clusters ($T \lesssim 10\, \mathrm{Myr}$) have power-law TPCFs that are characteristic of fractal distributions with a fractal dimension D2, and this scale-free nature extends out to a maximum scale lcorr beyond which the distribution becomes Poissonian. However, lcorr, and D2 vary significantly across the sample, and are correlated with a number of host galaxy physical properties, suggesting that there are physical differences in the underlying star cluster distributions. We also find that hierarchical structuring weakens with age, evidenced by flatter TPCFs for older clusters ($T \gtrsim 10\, \mathrm{Myr}$), that eventually converges to the residual correlation expected from a completely random large-scale radial distribution of clusters in the galaxy in $\sim 100 \, \mathrm{Myr}$. Our study demonstrates that the hierarchical distribution of star clusters evolves with age, and is strongly dependent on the properties of the host galaxy environment. 
    more » « less